Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Wound Healing and Anti-oxidant Activities of the Fruit Pulp of Limonia Acidissima Linn (Rutaceae) in Rats

K Ilango1 , V Chitra2

1Departments of Pharmaceutical Chemistry; 2Pharmacology, SRM College of Pharmacy, SRM University, Kattankulathur- 603 203. Tamilnadu, India.

For correspondence:-  K Ilango   Email: ilangok67@gmail.com   Tel:+914427453160

Received: 1 October 2009        Accepted: 3 April 2010        Published: 24 June 2010

Citation: Ilango K, Chitra V. Wound Healing and Anti-oxidant Activities of the Fruit Pulp of Limonia Acidissima Linn (Rutaceae) in Rats. Trop J Pharm Res 2010; 9(3):223-230 doi: 10.4314/tjpr.v9i3.2

© 2010 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: The fruits of Limonia acidissima Linn are used traditionally in India for the treatment of tumours, asthma, wounds, cardiac debility and hepatitis. The purpose of the present study was to evaluate the wound healing activity of the methanol extract of its fruit pulp (MELA) in incision, excision and dead-space wound models.
Methods: Albino rats of either sex were divided into four groups, viz, wounded control, wounded rats administered standard drug, nitrofurazone (2 %), and wounded rats administered MELA 200 and 400 mg/kg, respectively. In incision wound model, wound breaking strength and epithelization period were evaluated, while in excision wound model, wound contraction was studied. In dead-space wound model, granulation tissue dry weight, hydroxyproline levels in dry granulation tissue, as well as superoxide dismutase (SOD) and catalase levels in wet granulation tissue were estimated. Granulation tissue was subjected to histopathological examination in order to determine whether there was healing by formation of collagen in the wound tissue in extract-treated animals.
Results: Increased wound breaking strength, decreased epithelization period, increased wound contraction, increased granulation tissue weight and hydroxyproline concentration were observed in the various groups, compared with the control group. Also, increased activity of anti-oxidant enzymes, i.e., higher SOD and catalase levels, were seen in extract-treated groups when compared to controls. Wound healing activity was statistically significant (p < 0.001) in animals treated with 400 mg/kg of the extract.
Conclusion: The methanol extract of L. acidissima possesses significant dose-dependant wound healing and anti-oxidant activities; this supports traditional claims for the plant as a wound healer.

Keywords: Limonia acidissima, Wound healing, Antioxidant enzymes, Wound models, Hydroxyproline

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates